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The Schr6dinger equation for bosons or for distinguishable particles can be 
formally transformed into a Fokker-Planck equation. The stationary time- 
dependent correlation functions of the corresponding stochastic process 
(Langevin equation) coincide with the imaginary time quantum correlation 
functions. This relation can be used, e.g., to obtain information on the 
lower-lying spectrum by numerical simulation. (1) In this note we discuss the 
extension of these ideas for the treatment of fermions in one dimension, 
and some of the problems that appear in higher dimensions. 

We consider the following Langevin equation, with Gaussian white 
noise ~ 

.~i=-ViW()~l, . . . , )~N)-~-~i,  (~}#)(t)~(v)(t t))=(7(~ij(~#v(~(l- t  ') (1)  

The corresponding Fokker-Planck equation for the probability density 
P(-'~I ,---, -~N, t) is 

8P ~ Vi ( V i W P ) + ;  ~ AiP (2) 
8t i=1 i ~ l  

Using the stationary density Ps, we express P as P = p~/2~. Then ~ satisfies 

c~t 2 T 
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with 

2 1 A ] 

P can be expanded in terms of {~b,}, the eigenfunctions of H. The 
stationary time-dependent correlation function of an observable 
A(Yl,..., XN) becomes 

SAA(r)= (A(o) A(t))=~[(~olAl~,)]2e ;~,t (4) 
n 

2, are the eigenvalues. If one sets ~r = h/m, this expression coincides with 
the Euclidean groundstate correlation function of the quantum system 
defined by the Hamiltonian H. Equation (3) is the corresponding 
Schr6dinger equation. P5 and W can be expressed in terms of the 
groundstate 

P5 =~ 02, W= - a l n  ~o (5) 

Some of the lower eigenvalues can be obtained by numerical 
simulation of (1) from the long-time behavior of the correlations (5) for 
appropriately chosen functions A. This relation between the correlation 
functions of a quantum and a classical stochastic model is also useful for 
theoretical reasons, e.g., it allows one to relate dynamical critical properties 
to static ones in d +  1 dimension. ~1'2) 

Equation (5) gives the main condition required to associate a 
Langevin equation to a quantum system: the groundstate ~o must be real 
and positive. For bosons and distinguishable particles in any dimension 
this is guaranteed by the Perron-Frobenius theorem. For fermions in 
general ~o has positive and negative regions due to the antisymmetry con- 
dition. However, in one dimension it is possible to get a relation like (4) by 
restricting the stochastic process to a region where ~o is positive: The 
antisymmetrization applies to the total wave function, i.e., including the 
spin. If one considers spin-independent Hamiltonians, the spatial and spin 
parts factorize. All the calculations can be done with the spatial part alone; 
the spin manifests only through the restriction on the symmetry of ~n. For 
example, the He-atom has two independent series of states. The spatial part 
of the groundstate (singlet) is symmetric and the standard method can be 
applied. For more than two electrons the groundstate is always antisym- 
metric with respect to some permutations (since the Hilbert space of spin is 
two-dimensional it can only compensate the symmetry for 2 df). The states 
can be classified according to certain irreducible representations of the 
symmetric group. Since there are no transitions between different series, the 
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lowest state of each of them can be treated as a groundstate. We consider 
the case of completely antisymmetric groundstates; analogous arguments 
can be made for the other symmetries. 

Consider first the case of two particles. We are interested in correlation 
funcions of the form 

SAA=~ I(g, olA 1~>12 e -~"~ (6) 
n 

where the observable A is symmetric: A(Xl, x2)= A(x2, Xl). The expression 
(~o[A [~,)  is different from zero only if ~,  has the same symmetry as ~9 o, 
in which case 

(~o]A[~n)=fRzdXldXz~toA~ln~f~2dx, dxzf n (7) 

f .  is symmetric with respect to the nodal line x 1 --x2, which separates the 
plane into two regions, D~ and D2. Thus 

Iu2dx, dx2f.= 2 fo dxl dx2f.= 2 fo2dxl dx2f. (8) 

SAa can be expressed in terms of integrals over one region, e.g., D1, where 
fro is positive 

~fD dx2fn2 SAa = 22S~ - 22 dXl e -2"t (9) 
1 

Since a/ / the contributing eigenfunctions are zero at the boundary of D~, 
SA~ is identical to the correlation function of a stochastic process restricted 
to the region D1. Since the potential W= - 6  In ~o becomes infinite at the 
boundaries of D,, the process starting in D1 stays automatically there. 

For N fermions in one dimension we have the same picture: The nodal 
surfaces xi=xj separate ~N into N! equivalent regions Di; ~o is positive, 
e.g., in D1. Then 

~2~o~ (10) SA~ = (N!j ~AA 

$5~ is the correlation function of the stochastic process in D1. Thus SAA 
can be obtained by simulating a Langevin equation in a restricted region 
D1. 

In higher dimensions the situation is different. The nodal surfaces 
determined by the antisymmetry cannot split the configuration space into 
disconnected regions. The zeros of the groundstate ~9o do give such a 

822/43/5-6-10 



868 Jauslin and Schneider 

splitting E1 ..... EM, and the integrals in the expression for the correlation 
function can be restricted to a domain E~ where 0o is positive 

OoAOn 2 SAA=MzS~A-M2~ let dXl'""dXN e -~"' (11) 

But since the other eigenfunctions 0n are not zero at the whole boundary of 
E1 (i.e., 0n is not necessarily zero everywhere where 0o is), SAe3 cannot be 
interpreted as the correlation function of a stochastic process restricted to 
the domain El. The eigenfunctions 0n do not satisfy the correct boundary 
conditions. This method, therefore, cannot be extended to higher dimen- 
sions. However, the lower eigenvalues for fermion systems in any dimen- 
sion, in principle, can be obtained by a Langevin simulation as follows(3): 
One simulates with the potential W= - a  ln(q~g), where Cpo B is the com- 
pletely symmetric (i.e., bosonic) groundstate. If one chooses an A(x~ ..... XN) 
having the desired type of antisymmetry, the long-time behavior of SAA 
gives the eigenvalue of the lowest state having that type of antisymmetry. 
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